ProxSARAH: An Efficient Algorithmic Framework For Stochastic Composite Nonconvex Optimization

Nhan H. Pham

nhanph@live.unc.edu, nhanph.github.io

Department of Statistics and Operations Research The University of North Carolina at Chapel Hill (UNC) North Carolina

INFORMS Annual Meeting 2019, Seattle, WA [Oct 21, 2019]

Joint work with

Quoc Tran-Dinh (UNC), Lam Nguyen, and Dzung Phan (IBM).

Outline

Problem Statement, Motivation, and Objectives

Plain SGD and Variance Reduction Algorithms

Proximal SARAH Algorithms

Numerical Examples

Extension to Proximal Hybrid SGD Methods

Summary and Future Research

COMPOSITE NONCONVEX OPTIMIZATION

$$\underset{x \in \mathbb{R}^d}{\text{minimize}} \left\{ F(x) := \underbrace{\mathbb{E}\left[f(x,\xi)\right]}_{f(x)} + \psi(x) \right\}$$

• f(x) is nonconvex and smooth.

• $\psi(x)$ is convex and possibly nonsmooth to handle regularizers, penalty, or constraints.

Majority of this talk is based on the following manuscript:

N. H. Pham, L. M. Nguyen, D. T. Phan, and T.D. ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization. Preprint: https://arxiv.org/pdf/1902.05679.pdf, 2019.

Problems of Interest

Composite (Expectation) Nonconvex Optimization

$$\min_{x \in \mathbb{R}^d} \left\{ F(x) := f(x) + \psi(x) \equiv \mathbb{E}[f(x,\xi)] + \psi(x) \right\},$$
 (NCVX)

where

- ► $f(x) := \mathbb{E}[f(x,\xi)] : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$: smooth and nonconvex expected function.
- $\blacktriangleright \ \psi: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\} \text{ is convex and possibly nonsmooth}.$
- ψ can be proximally friendly.

Note: "proximally friendly" is not necessary for theoretical results, but for practice.

Composite finite-sum minimization problem

If $f_i(x) := f(x, \xi_i)$ $(i = 1, \cdots, n)$, then (NCVX) reduces to:

$$\min_{x \in \mathbb{R}^d} \left\{ F(x) := f(x) + \psi(x) \equiv \frac{1}{n} \sum_{i=1}^n f_i(x) + \psi(x) \right\}.$$
 (ERM)

Also arising from a sample averaging approximation (SAA) approach.

Motivation

Applications

- Problem (NCVX) and (ERM) cover many applications in different domains, including machine learning, statistics, and finance.
 - Empirical risk minimization
 - Neural network training (many talks have mentioned).
 - Many more ...

Theoretical aspect

- Modern variance reduction methods mostly focus on non-composite forms.
- Gap between the upper bound complexity in current research and lower bound worst-case complexity for (ERM).
- There exists no lower bound complexity for (NCVX), motivating to improve upper bound complexity (?)

Proximal Tractability: Review

Proximal operator

For a given **convex** function ψ , we define:

$$\operatorname{prox}_{\psi}(x) := \arg\min_{y} \left\{ \psi(y) + \frac{1}{2} \|y - x\|^2 \right\}$$

the proximal operator of ψ .

- If $prox_{\psi}(x)$ is efficient to evaluate, e.g. by:
 - a closed form or
 - a low-order polynomial-time algorithm,

then we say that ψ is tractably proximal or proximally friendly.

Common examples

- ψ is some common norms: ℓ_1 , ℓ_2 , ℓ_∞ , and nuclear norm.
- ψ is separable functions: group sparsity.
- ψ is the indicator function of a simple set such as box, cone, or simplex, i.e.:

$$\psi(x) = egin{cases} 0 & ext{if } x \in \mathcal{X}, \ +\infty & ext{otherwise}. \end{cases}$$

First-order Stationary Points

Optimality condition and first-order stationary points

• Given $F = f + \psi$, the gradient mapping of F is defined by

$$G_{\eta}(x) := rac{1}{\eta} \left(x - \operatorname{prox}_{\eta\psi} \left(x - \eta \nabla f(x) \right) \right), \quad \eta > 0.$$

Optimality condition:

$$\mathbb{E}\left[\|G_{\eta}(x^{\star})\|^{2}\right] = 0.$$
(1)

Any x^* satisfies (1) is called a first-order stationary point of (NCVX).

Approximate first-order stationary points

Finding an ε -approximate stationary point x_T to x^* in (1) after at most T iterations within a given accuracy $\varepsilon > 0$, i.e.

$$\mathbb{E}\left[\|G_{\eta}(x_T)\|^2\right] \leq \varepsilon^2.$$

- How fast does $\mathbb{E}\left[\|G_{\eta}(x_T)\|^2\right]$ converge to 0?
 - Iteration-complexity: Total number of iterations.
 - **First-order oracle complexity:** Total number of stochastic first-order (SFO) evaluations.
 - Proximal operations: Total number of $prox_{\eta\psi}$ operations.

Our Goals and Main Contributions

Our goals

- Develop new proximal SARAH¹ variants to solve both (NCVX) and (ERM).
 - Achieve the optimal complexity bounds or the best-known complexity bounds.
 - Less parameters tuning.

Main theoretical contributions

- New proximal variance reduction stochastic gradient algorithms to solve both (NCVX) and (ERM)
- Obtaining best-known complexity in both expectation and finite-sum cases
 - Optimal complexity bound for (ERM).
- Adaptive step-size variants that outperform the constant step-sizes schemes.

¹SARAH (stochastic recursive gradient estimator) was introduced by Nguyen et al in an ICML paper, 2017.

I SOAT

Classical Proximal SGD and Other Single-loop Variants

Classical proximal SGD

Starting from x_0 , SGD generates $\{x_t\}$ by updating:

$$x_{t+1} = \operatorname{prox}_{\eta_t \psi} \left(x_t - \eta_t \boldsymbol{u_t} \right),$$

where

- $u_t := \nabla_x f(x_t; \xi_t)$ for (NCVX) or $u_t := \nabla_x f_{i_t}(x_t)$ for (ERM).
- u_t is an unbiased estimator of $\nabla f(x_t)$, i.e. $\mathbb{E}[u_t] = \nabla f(x_t)$.
- Using mini-batches, intermediate steps, averaging, momentum, etc.
- Key point: How to choose step-size η_t ? (also called learning rate).

Other single-loop SGD-type schemes

SAGA, AdaGrad, ADAM, etc.

Double-loop Algorithms: Variance reduction

Notable variants

- SVRG [2]: Both double-loop and loopless variants. The most popular one.
- SARAH [4]: Some notable variants such as SPIDER, SpiderBoost, etc.

Algorithm 1 (General double-loop algorithms)

1: Initialize
$$\tilde{x}_0$$
 and learning rate $\eta_t > 0$.

- 2: OuterLoop: For $s := 1, 2, \cdots, S$ do
- 3: Generate a gradient snapshot $v_0^{(s)}$ at $x_0^{(s)} := \tilde{x}_{s-1}$.
- 4: InnerLoop: For $t := 1, \cdots, m$ do

5: Compute stochastic gradient estimator $v_t^{(s)}$.

6: Update $x_{t+1}^{(s)} := \operatorname{prox}_{\eta_t \psi}(x_t^{(s)} - \eta_t v_t^{(s)}).$

7: EndFor

8: Choose
$$\tilde{x}_s$$
 from $\{x_0^{(s)}, \cdots, x_{m+1}^{(s)}\}$

9: EndFor

Iteration Complexity and Oracle Complexity: A Summary

Iteration complexity and oracle complexity

- **Iteration complexity:** Total number of iterations to achieve an *ε*-stationary point.
- First-order oracle complexity: Total number of stochastic gradient evaluations and proximal operations.

Algorithms	Finite-sum	Expectation	Step-size	Composite	Adaptive step-size
GD	$\mathcal{O}\left(\frac{n}{\varepsilon^2}\right)$	NA	$\mathcal{O}\left(L^{-1}\right)$	Yes	Yes
SGD	NA	$\mathcal{O}\left(\sigma^{2}\varepsilon^{-4}\right)$	$O\left(L^{-1}\right)$	Yes	Yes
SVRG	$\mathcal{O}\left(n+n^{2/3}\varepsilon^{-2}\right)$	NA	$\mathcal{O}\left((nL)^{-1}\right) \to \mathcal{O}\left(L^{-1}\right)$	Yes	No
SPIDER	$\mathcal{O}\left(n+n^{1/2}\varepsilon^{-2}\right)$	$\mathcal{O}\left(\sigma^{2}\varepsilon^{-2}+\sigma\varepsilon^{-3}\right)$	$\mathcal{O}\left(L^{-1}\varepsilon\right)$	No	Yes
SpiderBoost	$\mathcal{O}\left(n+n^{1/2}\varepsilon^{-2}\right)$	$\mathcal{O}\left(\sigma^{2}\varepsilon^{-2}+\sigma\varepsilon^{-3}\right)$	$O\left(L^{-1}\right)$	Yes	No
ProxSARAH	$\mathcal{O}\left(n+n^{1/2}\varepsilon^{-2}\right)$	$\mathcal{O}\left(\sigma^{2}\varepsilon^{-2}+\sigma\varepsilon^{-3}\right)$	$\mathcal{O}\left(L^{-1}m^{-1/2}\right) \to \mathcal{O}\left(L^{-1}\right)$	Yes	Yes

Complexity summary (non-exhaustive)

Table: Comparison of results on SFO (stochastic first-order oracle) complexity for nonsmooth nonconvex optimization (both non-composite and composite cases).

Common Stochastic Gradient Estimators

Common stochastic gradient estimators

SGD estimators: unbiased and fixed variance

$$u_t :=
abla f(x_t, \xi_t)$$
 (singe sample) or $u_t := rac{1}{b_t} \sum_{\xi_t \in \mathcal{B}_t}
abla f(x_t, \xi_t)$ (batch).

SAGA: Only for finite-sum problems, unbiased, and variance reduced:

$$v_t := \nabla f_{i_t}(z_{t+1}^{i_t}) - \nabla f(z_t^{i_t}) + \frac{1}{n} \sum_{i=1}^n \nabla f(z_t^i),$$

where $z_{t+1}^{i_t} = x_t$ if $i_t = i$, and $z_{t+1}^i = z_t^i$ if $i \neq i_t$.

SVRG: unbiased and variance reduced estimator

$$v_t := \widetilde{u}_t + \nabla f(x_t, \xi_t) - \nabla f(\widetilde{x}, \xi_t),$$

where \widetilde{x} is a snapshot point, and \widetilde{u}_t is an unbiased estimator of ∇f at \widetilde{x} .

SARAH: biased and variance reduced estimator

$$v_t := v_{t-1} + \nabla f(x_t, \xi_t) - \nabla f(x_{t-1}, \xi_t).$$

Main Idea and Main Steps

Related works

▶ SPIDER, SpiderBoost, and some other variants: Update a plain proximal step $x_{t+1}^{(s)} := \operatorname{prox}_{\eta\psi} \left(x_t^{(s)} - \eta v_t^{(s)} \right)$ using SARAH estimator:

$$v_t^{(s)} := v_{t-1}^{(s)} + \left(\nabla f(x_t^{(s)}, \xi_t) - \nabla f(x_{t-1}^{(s)}, \xi_t)\right).$$
(SARAH)

- Require batch and constant/adaptive step-size to obtain best-known complexity.
- SPIDER performs poorly due to small step-size
- SpiderBoost performs well in practice with well-tuned parameters.

Our scheme

ProxSARAH: one proximal step and one averaging step:

$$\begin{cases} \widehat{x}_{t+1}^{(s)} & := \operatorname{prox}_{\eta_t \psi} \left(x_t^{(s)} - \eta_t v_t^{(s)} \right), \\ x_{t+1}^{(s)} & := (1 - \gamma_t) x_t^{(s)} + \gamma_t \widehat{x}_{t+1}^{(s)}. \end{cases}$$
(ProxSARAH)

Additional damped step-size $\gamma_t \rightarrow \text{more flexibility}$.

Proximal SARAH algorithm (ProxSARAH)

Algorithm 2 (ProxSARAH: A simplified version)

- 1: Choose an initial \tilde{x}_0 , fix a parameter $\eta > 0$.
- 2: OuterLoop: For $s := 1, 2, \cdots, S$ do
- 3: Generate a snapshot $v_0^{(s)}$ as a stochastic estimator of $\nabla f(x_0^{(s)})$.
- 4: Update $\widehat{x}_1^{(s)} := \operatorname{prox}_{\eta\psi}(x_0^{(s)} \eta v_0^{(s)}) \text{ and } x_1^{(s)} := (1 \gamma_0)x_0^{(s)} + \gamma_0 \widehat{x}_1^{(0)}.$
- 5: InnerLoop: For $t := 1, \cdots, m$ do
- 6: Evaluate SARAH estimator $v_t^{(s)}$
- 7: Update $\widehat{x}_{t+1}^{(s)} := \operatorname{prox}_{\eta\psi}(x_t^{(s)} \eta v_t^{(s)})$ and $x_{t+1}^{(s)} := (1 \gamma_t)x_t^{(s)} + \gamma_t \widehat{x}_{t+1}^{(s)}$
- 8: EndFor

9: Set
$$\widetilde{x}_s := x_{m+1}^{(s)}$$

10: EndFor

Remarks

- The outer loop in ProxSARAH is mandatory to guarantee convergence.
- Both step-sizes η and γ can be fixed or adaptively updated.
- Work with both single sample and mini-batch.
- The main step can be written as $x_{t+1} := x_t \gamma_t \eta G_{\eta}(x_t)$.

Convergence Guarantee: Summary

Convergence in the finite-sum case (ERM)

Let the step-sizes γ, η be fixed or updated adaptively. If we choose snapshot batch size b := n and epoch length m := n, then to guarantee $\mathbb{E}\left[\|G_{\eta}(\widetilde{x}_{T})\|^{2}\right] \leq \varepsilon^{2}$, the followings hold

The number of outer iterations S does not exceed

$$S := \mathcal{O}\left(\frac{L}{\sqrt{n\varepsilon^2}} \left[F(\widetilde{x}_0) - F^\star\right]\right).$$

The number of stochastic gradient evaluations T_{grad} does not exceed

$$\mathcal{T}_{\text{grad}} := \mathcal{O}\left(\frac{L\sqrt{n}}{\varepsilon^2} \left[F(\widetilde{x}_0) - F^{\star}\right]\right),$$

The number of prox_n operations does not exceed

$$\mathcal{T}_{\mathrm{prox}} := \mathcal{O}\left(\frac{L\sqrt{n}}{\varepsilon^2} \left[F(\widetilde{x}_0) - F^{\star}\right]\right).$$

Convergence Guarantee: Summary (cont.)

Convergence in the expectation case (NCVX)

Let the step-sizes γ, η be fixed or updated adaptively. If we choose snapshot batch size $b := \mathcal{O}\left(\frac{\sigma^2}{\epsilon^2}\right)$ and epoch length $m := \mathcal{O}\left(\frac{\sigma^2}{\epsilon^2}\right)$, then to guarantee $\mathbb{E}\left[\|G_{\eta}(\widetilde{x}_T)\|^2\right] \leq \varepsilon^2$, the followings hold

The number of outer iterations S is at most

$$S := \mathcal{O}\left(\frac{L[F(\widetilde{x}_0) - F^\star]}{\sigma\varepsilon}\right).$$

► The number of individual stochastic gradient evaluations $abla f(\cdot,\xi_t)$ does not exceed

$$\mathcal{T}_{\text{grad}} := \mathcal{O}\left(\frac{L\sigma}{\varepsilon^3}\left[F(\widetilde{x}_0) - F^\star\right]\right),$$

• The number of $prox_{n\psi}$ operations does not exceed

$$\mathcal{T}_{\text{prox}} := \mathcal{O}\left(\frac{\sigma L[F(\widetilde{x}_0) - F^{\star}]}{\varepsilon^2}\right)$$

Optimal Complexity for the Finite-sum Case

Lower bound complexity for the finite-sum problem

Fang et al.^2 and Zhou et al.^3 showed that under standard assumptions, the lower bound complexity of SGD on ${\cal T}_{\rm grad}$ is

$$\Omega\left(\frac{L\left[F(x^0) - F^\star\right]\sqrt{n}}{\varepsilon^2}\right)$$

A few remarks

For the finite-sum case:

► If
$$n = \mathcal{O}\left(\varepsilon^{-4}\right)$$
, then $\mathcal{T}_{\text{grad}} = \mathcal{O}\left(n^{1/2}\varepsilon^{-2}\right)$.

► If $n = \Omega\left(\varepsilon^{-4}\right)$, then $\mathcal{T}_{\text{grad}} = \mathcal{O}\left(n + n^{1/2}\varepsilon^{-2}\right)$ due to the full gradient snapshots.

For the expectation case:

► If
$$\sigma \leq \frac{32L[F(x_0) - F^{\star}]}{\varepsilon^2}$$
, then $\mathcal{T}_{\text{grad}} = \mathcal{O}\left(\sigma\varepsilon^{-3}\right)$.

• Otherwise, $\mathcal{T}_{\text{grad}} = \mathcal{O}\left(\sigma\varepsilon^{-3} + \sigma^{2}\varepsilon^{-2}\right)$ due to the snapshot $v_{0}^{(s)}$

²C. Fang, C. J. Li, Z. Lin, and T. Zhang. SPIDER: Near-optimal non-convex optimization via stochastic path integrated differential estimator. arXiv preprint arXiv:1807.01695, 2018.

 $^3\text{D.}$ Zhou and Q. Gu. Lower bounds for smooth nonconvex finite-sum optimization. arXiv preprint arXiv:1901.11224, 2019.

Proximal Stochastic Recursive Gradient Descent Algorithm | Nhan H. Pham, nhanph@live.unc.edu, nhanph.github.io

Three Numerical Examples

Nonconvex optimization models

- Simple example: Nonnegative principal component analysis (NN-PCA)
- **Binary classification:** Sparse binary classification with nonconvex losses
- DL relations: Sparse feedforward neural network training

Our numerical examples are still very preliminary. Our code can be found at:

https://github.com/unc-optimization/StochasticProximalMethods.

Comparison criteria

- The norm of gradient mapping $||G_{\eta}(x_t^{(s)})||$ with $(\eta = 0.5)$
- Training loss values.
- Training accuracy and test accuracy.

Datasets

- Standard datasets from LIBSVM datasets.
- From small datasets to relatively large datasets.

Motivation

Motivation

Observation

- Both SVRG and SARAH are variance reduction methods, but have two loops, making them challenging to tune parameters.
- **SGD** often has good progress at early stage but oscillates at the end.
- Variance reduction methods are better at later stage.

Questions

- Can we combine both schemes to obtain a trade-off?
- Can we design single loop algorithms with better complexity than SGD?

\Rightarrow A hybrid stochastic optimization approach

Key idea

Key idea

Combining SARAH estimator and an unbiased one such as SGD:

$$v_t := \beta_t v_t^{\text{sarah}} + (1 - \beta_t) u_t^{\text{unbiased}},$$

where $\beta_t \in [0,1]$ is a given parameter that trades off between bias and variance.

Apply ProxSARAH framework to solve (NCVX) and (ERM).

More details

T.D., N. H. Pham, D. T. Phan, and L. M. Nguyen. A Hybrid Stochastic Optimization Framework for Stochastic Composite Nonconvex Optimization. Preprint: https://arxiv.org/pdf/1907.03793.pdf, 2019.

Summary and future research

Summary

- Seeking first-order stationary points of composite nonconvex optimization.
- New SARAH-based algorithms with flexible choices of parameters.
- Theoretical novelty
 - Convergence analysis in both single sample or mini-batch, finite-sum, or expectation cases.
 - Optimal or best-known convergence rates and complexity bounds in all cases.
 - A new adaptive step-size scheme which is updated in an increasing fashion.
- A new hybrid approach for stochastic optimization methods.

Possible future directions

- The hybrid idea can be extended to other stochastic estimators.
- Second-order stationary points (local minima, saddle-points).
- Applications to other problems and algorithmic variants.

Thank you!

Slides and more details are available at nhanph.github.io

References |

[1] S. Ghadimi and G. Lan.

Stochastic first-and zeroth-order methods for nonconvex stochastic programming. *SIAM J. Optim.*, 23(4):2341–2368, 2013.

[2] R. Johnson and T. Zhang.

Accelerating stochastic gradient descent using predictive variance reduction. In Advances in Neural Information Processing Systems (NIPS), pages 315–323, 2013.

 [3] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro.
 Robust stochastic approximation approach to stochastic programming. *SIAM J. Optim.*, 19(4):1574–1609, 2009.

[4] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takac. SARAH: A novel method for machine learning problems using stochastic recursive gradient.

In The 34th International Conference on Machine Learning (ICML), 2017.

[5] H. Robbins and S. Monro.

A stochastic approximation method.

The Annals of Mathematical Statistics, 22(3):400–407, 1951.