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Overview and References

COMPOSITE NONCONVEX OPTIMIZATION

minimize
x∈Rd

{
F (x) := E [f (x, ξ)]︸           ︷︷           ︸

f(x)

+ ψ(x)
}

I f(x) is nonconvex and smooth.

I ψ(x) is convex and possibly nonsmooth to handle regularizers,
penalty, or constraints.

Majority of this talk is based on the following manuscript:
I N. H. Pham, L. M. Nguyen, D. T. Phan, and T.D. ProxSARAH: An Efficient Algo-

rithmic Framework for Stochastic Composite Nonconvex Optimization. Preprint:
https://arxiv.org/pdf/1902.05679.pdf, 2019.

Proximal Stochastic Recursive Gradient Descent Algorithm | Nhan H. Pham, nhanph@live.unc.edu, nhanph.github.io Slide 3/29

https://arxiv.org/pdf/1902.05679.pdf


Problems of Interest

Composite (Expectation) Nonconvex Optimization

min
x∈Rd

{
F (x) := f(x) + ψ(x) ≡ E[f(x, ξ)] + ψ(x)

}
, (NCVX)

where
I f(x) := E [f(x, ξ)] : Rd → R ∪ {+∞}: smooth and nonconvex expected function.

I ψ : Rd → R ∪ {+∞} is convex and possibly nonsmooth.

I ψ can be proximally friendly.
Note: “proximally friendly" is not necessary for theoretical results, but for practice.

Composite finite-sum minimization problem
If fi(x) := f(x, ξi) (i = 1, · · · , n), then (NCVX) reduces to:

min
x∈Rd

{
F (x) := f(x) + ψ(x) ≡

1
n

n∑
i=1

fi(x) + ψ(x)
}
. (ERM)

Also arising from a sample averaging approximation (SAA) approach.
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Motivation

Applications
I Problem (NCVX) and (ERM) cover many applications in different domains, in-

cluding machine learning, statistics, and finance.
I Empirical risk minimization
I Neural network training (many talks have mentioned).
I Many more ...

Theoretical aspect
I Modern variance reduction methods mostly focus on non-composite forms.

I Gap between the upper bound complexity in current research and lower bound
worst-case complexity for (ERM).

I There exists no lower bound complexity for (NCVX), motivating to improve upper
bound complexity (?)
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Proximal Tractability: Review

Proximal operator
I For a given convex function ψ, we define:

proxψ(x) := arg min
y

{
ψ(y) + 1

2‖y − x‖
2
}

the proximal operator of ψ.
I If proxψ(x) is efficient to evaluate, e.g. by:

I a closed form or
I a low-order polynomial-time algorithm,

then we say that ψ is tractably proximal or proximally friendly.

Common examples
I ψ is some common norms: `1, `2, `∞, and nuclear norm.
I ψ is separable functions: group sparsity.
I ψ is the indicator function of a simple set such as box, cone, or simplex, i.e.:

ψ(x) =
{

0 if x ∈ X ,
+∞ otherwise.
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First-order Stationary Points

Optimality condition and first-order stationary points
I Given F = f + ψ, the gradient mapping of F is defined by

Gη(x) :=
1
η

(
x− proxηψ (x− η∇f(x))

)
, η > 0.

I Optimality condition:
E
[
‖Gη(x?)‖2

]
= 0. (1)

Any x? satisfies (1) is called a first-order stationary point of (NCVX).

Approximate first-order stationary points
I Finding an ε-approximate stationary point xT to x? in (1) after at most T iterations

within a given accuracy ε > 0, i.e.

E
[
‖Gη(xT )‖2

]
≤ ε2.

I How fast does E
[
‖Gη(xT )‖2

]
converge to 0?

I Iteration-complexity: Total number of iterations.
I First-order oracle complexity: Total number of stochastic first-order (SFO) evaluations.
I Proximal operations: Total number of proxηψ operations.
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Our Goals and Main Contributions

Our goals
I Develop new proximal SARAH1 variants to solve both (NCVX) and (ERM).

I Achieve the optimal complexity bounds or the best-known complexity bounds.
I Less parameters tuning.

Main theoretical contributions
I New proximal variance reduction stochastic gradient algorithms to solve both

(NCVX) and (ERM)
I Obtaining best-known complexity in both expectation and finite-sum cases

I Optimal complexity bound for (ERM).

I Adaptive step-size variants that outperform the constant step-sizes schemes.

1SARAH (stochastic recursive gradient estimator) was introduced by Nguyen et al in an ICML paper, 2017.
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Classical Proximal SGD and Other Single-loop Variants

Classical proximal SGD
Starting from x0, SGD generates {xt} by updating:

xt+1 = proxηtψ (xt − ηtut) ,

where
I ut := ∇xf(xt; ξt) for (NCVX) or ut := ∇xfit (xt) for (ERM).
I ut is an unbiased estimator of ∇f(xt), i.e. E[ut] = ∇f(xt).
• Using mini-batches, intermediate steps, averaging, momentum, etc.
• Key point: How to choose step-size ηt? (also called learning rate).

Other single-loop SGD-type schemes
I SAGA, AdaGrad, ADAM, etc.
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Double-loop Algorithms: Variance reduction

Notable variants
I SVRG [2]: Both double-loop and loopless variants. The most popular one.

I SARAH [4]: Some notable variants such as SPIDER, SpiderBoost, etc.

Algorithm 1 (General double-loop algorithms)
1: Initialize x̃0 and learning rate ηt > 0.
2: OuterLoop: For s := 1, 2, · · · , S do
3: Generate a gradient snapshot v(s)

0 at x(s)
0 := x̃s−1.

4: InnerLoop: For t := 1, · · · ,m do
5: Compute stochastic gradient estimator v(s)

t .

6: Update x(s)
t+1 := proxηtψ(x(s)

t − ηtv
(s)
t ).

7: EndFor
8: Choose x̃s from {x(s)

0 , · · · , x(s)
m+1}.

9: EndFor
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Iteration Complexity and Oracle Complexity: A Summary

Iteration complexity and oracle complexity
I Iteration complexity: Total number of iterations to achieve an ε-stationary point.
I First-order oracle complexity: Total number of stochastic gradient evaluations and

proximal operations.

Complexity summary (non-exhaustive)

Algorithms Finite-sum Expectation Step-size Composite Adaptive step-size
GD O

(
n
ε2

)
NA O

(
L−1
)

Yes Yes

SGD NA O
(
σ2ε−4

)
O
(
L−1
)

Yes Yes

SVRG O
(
n+ n2/3ε−2

)
NA O

(
(nL)−1

)
→ O

(
L−1
)

Yes No

SPIDER O
(
n+ n1/2ε−2

)
O
(
σ2ε−2 + σε−3

)
O
(
L−1ε

)
No Yes

SpiderBoost O
(
n+ n1/2ε−2

)
O
(
σ2ε−2 + σε−3

)
O
(
L−1
)

Yes No

ProxSARAH O
(
n+ n1/2ε−2

)
O
(
σ2ε−2 + σε−3

)
O
(
L−1m−1/2

)
→ O

(
L−1
)

Yes Yes

Table: Comparison of results on SFO (stochastic first-order oracle) complexity for nonsmooth non-
convex optimization (both non-composite and composite cases).
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Common Stochastic Gradient Estimators
Common stochastic gradient estimators
I SGD estimators: unbiased and fixed variance

ut := ∇f(xt, ξt) (singe sample) or ut :=
1
bt

∑
ξt∈Bt

∇f(xt, ξt) (batch).

I SAGA: Only for finite-sum problems, unbiased, and variance reduced:

vt := ∇fit (z
it
t+1)−∇f(zitt ) +

1
n

n∑
i=1

∇f(zit),

where zitt+1 = xt if it = i, and zit+1 = zit if i , it.

I SVRG: unbiased and variance reduced estimator

vt := ũt +∇f(xt, ξt)−∇f(x̃, ξt),

where x̃ is a snapshot point, and ũt is an unbiased estimator of ∇f at x̃.

I SARAH: biased and variance reduced estimator

vt := vt−1 +∇f(xt, ξt)−∇f(xt−1, ξt).
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Main Idea and Main Steps

Related works
I SPIDER, SpiderBoost, and some other variants: Update a plain proximal step
x

(s)
t+1 := proxηψ

(
x

(s)
t − ηv

(s)
t

)
using SARAH estimator:

v
(s)
t := v

(s)
t−1 +

(
∇f(x(s)

t , ξt)−∇f(x(s)
t−1, ξt)

)
. (SARAH)

I Require batch and constant/adaptive step-size to obtain best-known complexity.
I SPIDER performs poorly due to small step-size
I SpiderBoost performs well in practice with well-tuned parameters.

Our scheme
I ProxSARAH: one proximal step and one averaging step: x̂

(s)
t+1 := proxηtψ

(
x

(s)
t − ηtv

(s)
t

)
,

x
(s)
t+1 := (1− γt)x(s)

t + γtx̂
(s)
t+1.

(ProxSARAH)

I Additional damped step-size γt → more flexibility.
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Proximal SARAH algorithm (ProxSARAH)

Algorithm 2 (ProxSARAH: A simplified version)

1: Choose an initial x̃0, fix a parameter η > 0.
2: OuterLoop: For s := 1, 2, · · · , S do
3: Generate a snapshot v(s)

0 as a stochastic estimator of ∇f(x(s)
0 ).

4: Update x̂(s)
1 := proxηψ(x(s)

0 − ηv(s)
0 ) and x(s)

1 := (1− γ0)x(s)
0 + γ0x̂

(0)
1 .

5: InnerLoop: For t := 1, · · · ,m do
6: Evaluate SARAH estimator v(s)

t

7: Update x̂(s)
t+1 := proxηψ(x(s)

t − ηv
(s)
t ) and x(s)

t+1 := (1− γt)x(s)
t + γtx̂

(s)
t+1

8: EndFor
9: Set x̃s := x

(s)
m+1

10: EndFor

Remarks
I The outer loop in ProxSARAH is mandatory to guarantee convergence.
I Both step-sizes η and γ can be fixed or adaptively updated.
I Work with both single sample and mini-batch.
I The main step can be written as xt+1 := xt − γtηGη(xt).
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Convergence Guarantee: Summary

Convergence in the finite-sum case (ERM)
Let the step-sizes γ, η be fixed or updated adaptively. If we choose snapshot batch
size b := n and epoch length m := n, then to guarantee E

[
‖Gη(x̃T )‖2

]
≤ ε2, the

followings hold
I The number of outer iterations S does not exceed

S := O
(

L
√
nε2

[
F (x̃0)− F ?

])
.

I The number of stochastic gradient evaluations Tgrad does not exceed

Tgrad := O
(
L
√
n

ε2

[
F (x̃0)− F ?

])
,

I The number of proxηψ operations does not exceed

Tprox := O
(
L
√
n

ε2

[
F (x̃0)− F ?

])
.
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Convergence Guarantee: Summary (cont.)

Convergence in the expectation case (NCVX)
Let the step-sizes γ, η be fixed or updated adaptively. If we choose snapshot batch
size b := O

(
σ2

ε2

)
and epoch length m := O

(
σ2

ε2

)
, then to guarantee

E
[
‖Gη(x̃T )‖2

]
≤ ε2, the followings hold

I The number of outer iterations S is at most

S := O
(
L[F (x̃0)− F ?]

σε

)
.

I The number of individual stochastic gradient evaluations ∇f(·, ξt) does not exceed

Tgrad := O
(
Lσ

ε3

[
F (x̃0)− F ?

])
,

I The number of proxηψ operations does not exceed

Tprox := O
(
σL[F (x̃0)− F ?]

ε2

)
.
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Optimal Complexity for the Finite-sum Case

Lower bound complexity for the finite-sum problem
Fang et al.2 and Zhou et al.3 showed that under standard assumptions, the lower
bound complexity of SGD on Tgrad is

Ω

(
L
[
F (x0)− F ?

] √
n

ε2

)
.

A few remarks
For the finite-sum case:
I If n = O

(
ε−4
)
, then Tgrad = O

(
n1/2ε−2

)
.

I If n = Ω
(
ε−4
)
, then Tgrad = O

(
n+ n1/2ε−2

)
due to the full gradient snapshots.

For the expectation case:

I If σ ≤ 32L[F (̃x0)−F?]
ε2 , then Tgrad = O

(
σε−3

)
.

I Otherwise, Tgrad = O
(
σε−3 + σ2ε−2

)
due to the snapshot v(s)

0

2C. Fang, C. J. Li, Z. Lin, and T. Zhang. SPIDER: Near-optimal non-convex optimization via stochastic path
integrated differential estimator. arXiv preprint arXiv:1807.01695, 2018.

3D. Zhou and Q. Gu. Lower bounds for smooth nonconvex finite-sum optimization. arXiv preprint
arXiv:1901.11224, 2019.
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Three Numerical Examples

Nonconvex optimization models
I Simple example: Nonnegative principal component analysis (NN-PCA)
I Binary classification: Sparse binary classification with nonconvex losses
I DL relations: Sparse feedforward neural network training

Our numerical examples are still very preliminary. Our code can be found at:
https://github.com/unc-optimization/StochasticProximalMethods.

Comparison criteria
I The norm of gradient mapping ‖Gη(x(s)

t )‖ with (η = 0.5)
I Training loss values.
I Training accuracy and test accuracy.

Datasets
I Standard datasets from LIBSVM datasets.
I From small datasets to relatively large datasets.
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Motivation

Motivation
Observation
I Both SVRG and SARAH are variance reduction methods, but have two loops,

making them challenging to tune parameters.
I SGD often has good progress at early stage but oscillates at the end.
I Variance reduction methods are better at later stage.

Questions
I Can we combine both schemes to obtain a trade-off?
I Can we design single loop algorithms with better complexity than SGD?

⇒ A hybrid stochastic optimization approach
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Key idea

Key idea
I Combining SARAH estimator and an unbiased one such as SGD:

vt := βtv
sarah
t + (1− βt)uunbiased

t ,

where βt ∈ [0, 1] is a given parameter that trades off between bias and variance.
I Apply ProxSARAH framework to solve (NCVX) and (ERM).

More details
I T.D., N. H. Pham, D. T. Phan, and L. M. Nguyen. A Hybrid Stochastic Opti-

mization Framework for Stochastic Composite Nonconvex Optimization. Preprint:
https://arxiv.org/pdf/1907.03793.pdf, 2019.
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Summary and future research

Summary
I Seeking first-order stationary points of composite nonconvex optimization.
I New SARAH-based algorithms with flexible choices of parameters.
I Theoretical novelty

I Convergence analysis in both single sample or mini-batch, finite-sum, or expectation
cases.

I Optimal or best-known convergence rates and complexity bounds in all cases.
I A new adaptive step-size scheme which is updated in an increasing fashion.

I A new hybrid approach for stochastic optimization methods.

Possible future directions
I The hybrid idea can be extended to other stochastic estimators.
I Second-order stationary points (local minima, saddle-points).
I Applications to other problems and algorithmic variants.
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Thank you!

Slides and more details are available at nhanph.github.io
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